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Displacement phase differences 
in a harmonically oscillating pile 

N. MAKRIS* and G. GAZETAS* 

Analytical solutions are developed for harmonic 
wave propagation in an axially or laterally oscil- 
lating pile embedded in homogeneous soil and 
excited at the top. Pilesoil interaction is realisti- 
cally represented through a dynamic Winkler 
model, the springs and dashpots of which are given 
values based on results of finite element analyses 
with the soil treated as a linear hysteretic contin- 
uum. Closed form expressions are derived for the 
phase velocities of the generated waves; these are 
compared with characteristic phase velocities in 
rods and beams subjected to compression- 
extension (axial) and flexural (lateral) vibrations. 
The role of radiation and material damping is elu- 
cidated; it is shown that the presence of such 
damping radically changes the nature of wave pro- 
pagation, especially in lateral oscillations where an 
upward propagating (reflected) wave is generated 
even in a semi-infinite head-loaded pile. Solutions 
are then developed for the phase differences 
between pile displacements at various depths. For 
most piles such differences are not significant and 
waves emanate nearly simultaneously from the 
periphery of an oscillating pile. This conclusion is 
useful in analysing dynamic pile to pile interaction, 
the consequences of which are shown in this Paper. 

KEYWORDS: deformation; dynamics; piles; vibration; 
WBWS. 

Des solutions analytiques ont ctb d&velopp&s afin 
d’Ctudier la propagation harmonique des ondes 
dans un pieu ancri! dans un sol homogbe, excite! zi 
son sommet, et oscillant IaGralement et axi- 
alement. L’interaction sol-pieu est bien reprbent&e 
par le modkle dynamique de Winkler dont les 
ressorts et ‘pistons’ sont affect(ts de valeurs calcu- 
l&s P partir d’analyses par Blbments finis, le sol 
&tant supposit g hyst&sis linbaire. Des expressions 
de forme bquivalente sont d&iv&s pour calculer les 
vitesses de phase des ondes induites. Elles sont 
compari?es aux vitesses en phase caracti?ristiques 
obtenues dans des barres et poutres soumises I des 
vibrations de type compression-extension (axiales) 
ou de type flexion (IatCrales). Le ri31e de la radi- 
ation et celui du ‘damping’ du matkriau sont expli- 
qub; l’on montre que l’existence d’un ‘damping’ 
modifie totalement la nature de la propagation des 
ondes, tout particuli&ement lors d’oscillations late- 
rales oi une onde se propageant vers le haut 
apparait, m@me dans un pieu semi-h&i charge! P 
son sommet. Des solutions permettant de calculer 
les differences de phase entre les deplacements des 
pieux P differentes profondeurs sont alors develop- 
pi?es. Pour la plupart des pieux, ces differences ne 
sont pas signiticatives et les ondes Cmergent $ peu 
pr&s simultanCment de la p&iphi?rie du pieu oscil- 
lant. Cette conclusion est trb utile pour I’analyse 
de I’interaction dynamique pieu-pieu dont I’article 
d&rite les consCquences. 

INTRODUCTION 

This work was prompted by the need to develop 
a deeper understanding of some of the wave pro- 
pagation phenomena associated with the dynamic 
response of piles and pile groups. For example, it 
is well known (Kaynia & Kausel, 1982; Nogami, 
1983; Novak, 1985; Roesset, 1984) that two 
neighbouring piles in a group may affect each 
other so substantially that the overall dynamic 
behaviour of the group is vastly different from 
that of each individual pile. This pile to pile inter- 
action is frequency-dependent and is a conse- 
quence of waves that are emitted from the 
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details see p. ii. 
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periphery of each pile and propagate until they 
‘strike’ the other pile. 

As an example, for a square group of 2 x 2 
rigidly-capped piles embedded in a deep homoge- 
neous stratum Fig. 1 shows the variation with fre- 
quency of the vertical and horizontal dynamic 
group stiffness and damping factors, defined as 
the ratios of the group dynamic stiffness and 
dashpot coefficients, respectively, to the sum of 
the static stiffnesses of the individual solitary 
piles. At zero frequency the stiffness group factors 
reduce to the respective static group factors (also 
called ‘efficiency factors’ by geotechnical 
engineers) which are invariably smaller than 
unity. 

The continuous curves in Fig. 1, adopted from 
the rigorous solution of Kaynia & Kausel (1982), 
reveal that, as a result of dynamic pile to pile 
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Fig. 1. Normal&d vertical and lateral impedances of a 2 x 2 pile group (E,/E, = 1000, L/d = 15, v = O-4, jl = O-05): 
solid curves = rigorous solution of Kaynia & Kausel (1982); points = simplified solution of : (a) Dobry & Gazetas 
(1988); (b) Makris & Gazetas (1992) (impedances are expressed as t + iu, Q; subscripts z and x refer to vertical and 
horizontal mode* KC’) and QC’) 
of the single (solitary) pile) 

are the total dynamic stiffness and damping of the Qpile group; ZP) is the static stitTuess 

interaction, the dynamic stiffness group factors 
achieve values that may far exceed the static efh- 
ciency factors, and may even exceed unity. Both 
stiffness and damping factors are not observed in 
the single pile response. Specifically, the peaks of 
the curves occur whenever waves originating with 
a certain phase from one pile arrive at the adjac- 
ent pile in exactly opposite phase, thereby indu- 
cing an upwards displacement at a moment when 
the displacement due to this pile’s own load is 
downwards. Thus, a larger force must be applied 
to this pile to enforce a certain displacement 
amplitude, resulting in a larger overall stiffness of 
the group as compared to the sum of the individ- 
ual pile stiffnesses. 

Also shown in Fig. 1 as points are the results of 
a very simple analytical method of solution pro- 
posed by Dobry & Gazetas (1988) and further 

developed by Makris & Gazetas (1992), Makris, 
Gazetas & Fan (1992) and Gazetas & Makris 
(1991). The method introduces a number of physi- 
cally motivated approximations, and was orig- 
inally intended merely to provide a simple 
engineering explanation of the causes of the 
numerically observed peaks and troughs in the 
dynamic impedances of pile groups. Yet, as is 
evident from the comparisons shown in Fig. 1, 
the results of the method plot remarkably close to 
the rigorous curves for all three pile separation 
distances considered (two, five and ten pile 
diameters). Even some detailed trends in the 
group response seem to be adequately captured 
by the simple solution. Further successful com- 
parisons are given in the above-mentioned refer- 
ences. 

The fundamental idea of this method is that the 
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displacement field created along the sidewall of 
an oscillating pile (in any mode of vibration) pro- 
pagates and affects the response of neighbouring 
piles. It is assumed that cylindrical waves are 
emitted from the perimeter of an oscillating pile, 
and propagate horizontally in the r direction 
only. This hypothesis is reminiscent of the shear- 
ing concentric cylinders around statically loaded 
pile and pile groups assumed by Randolph & 
Wroth (1978, 1979), and is also similar to the 
dynamic Winkler assumption introduced by 
Novak (1974) and extensively used with success in 
dynamic analyses of pile groups. It is further 
assumed that these cylindrical waves emanate 
simultaneously from all points along the pile 
length; hence for a homogeneous deposit they 
spread out in phase and form a cylindrical wave- 
front, concentric with the generating pile (unless 
the pile is rigid, the amplitude of oscillation along 
the wavefront will be a (usually decreasing) func- 
tion of depth). The resulting dynamic complex- 
valued pile to pile interaction factor for vertical 
oscillation takes the simple form (Dobry 8z 
Gaze&s, 1988) 

~V=~)“‘exp(-@{)exp(-io~) (1) 

where r,, = d/2 is the radius of the pile, S is the 
axis to axis distance of the piles, and V, and /l are 
the S wave velocity and hysteretic damping ratio 
of the soil respectively. 

The most crucial of the introduced simplifying 
assumptions is that the waves created by an oscil- 
lating pile emanate simultaneously from all peri- 
metric points along the pile length, and hence, for 
a homogeneous stratum, form cylindrically 
expanding waves that would ‘strike’ an adjacent 
pile simultaneously at various points along its 
length, i.e. the arriving waves are all in phase, 
although their amplitudes decrease with depth. 

The question arises as to whether the satisfac- 
tory performance of such a simple method is 
merely a coincidence (e.g. due to cancellation of 
errors), or a consequence of fundamentally sound 
physical approximations. Answering this question 
was one of the motives for the work reported in 
this Paper. Hence, the first objective was to inves- 
tigate whether or not this key assumption of syn- 
chronous wave emission from an oscillating pile 
is indeed a reasonable engineering approximation 
and, if it is, for what ranges of problem param- 
eters. 

A second, broader, objective of the Paper is to 
obtain a deeper physical insight into the nature of 
wave propagation in a single harmonically oscil- 
lating pile embedded in homogeneous soil. To 
this end, realistic dynamic Winkler-type models 
for vertically and horizontally oscillating single 

piles are developed, from which analytical solu- 
tions are derived for the apparent phase velocities 
of the waves propagating along the pile and for 
the variation with depth of pile displacements 
and phase angle differences. A limited number of 
rigorous finite element results are also obtained 
to substantiate the findings of the Winkler model. 
It is shown that the apparent phase velocities for 
typical piles are indeed quite large, and the dis- 
placement phase differences correspondingly 
small, especially within the upper, most active 
part of the pile. It is also found that at very high 
frequencies the phase velocities in a pile embed- 
ded in homogeneous soil become asymptotically 
equal to the wave velocities of an unsupported 
bar or beam in longitudinal and flexural oscil- 
lations. 

PROBLEM DEFINITION 

The problem studied involves a single floating 
pile embedded in a uniform halfspace and sub- 
jected at its head to a harmonic loading of circu- 
lar frequency w. The pile is a linearly elastic 
flexural beam of Young’s modulus E, , diameter d, 
cross-sectional area A,, bending moment of 
inertia I, and mass per unit length m. The soil is 
modelled as dynamic Winkler medium, resisting 
pile displacements through continuously distrib- 
uted linear springs (k, or k,) and dashpots (c, or 
c,), as shown in Fig. 2 for horizontal (x) and verti- 
cal (z) motion. For the problem of lateral vibra- 
tion (horizontal motion), the pile is considered to 
be fixed-head (zero rotation at the top). The force 
to displacement ratio of the Winkler medium at 
every depth defines the complex-valued imped- 
ances k, + iwc, (vertical motion) or k, + iwc, 
(horizontal motion), i = J( - l), where c, and c, 
would, in general, reflect both radiation and 
material damping in the soil. k, and k, are in 
units of stiffness per unit length of the pile (i.e. 
[F] CL]-‘); they correspond to the traditional 
subgrade modulus (in units [FJ CL]-“) multiplied 
by the width (diameter) d of the pile. 

Frequency-dependent values are assigned to 
these uniformly-distributed spring and dashpot 
coefficients, using the following algebraic expres- 
sions developed by matching the dynamic pile- 
head displacement from Winkler and from 
dynamic finite-element analyses (Roesset & 
Angelides, 1979; Blaney, Kausel & Roesset, 1976; 
Dobry et al., 1982; Gazetas & Dobry, 1984a, 
1984b) 

k, E 0.6E,(l + -$,/a,,) (2a) 

c~ x (Cr)radiation + (Cz)hysteresis 

(2b) 
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Fig. 2. Dynamic Winkler model for axially and laterally oscillating pile 

k, z 1.2E, 

‘.X E (CxLliation + (Cxhystcresis 

(24 

z 2dp+ + (%>“4]~;1,4 +2/I b (2d) 

where B is hysteretic damping, ps is mass density, 
E, is Young’s modulus, V, is S-wave velocity of 
the soil, a, = ad/l/ and V,, is an apparent veloc- 
ity of the compressionextension waves, called 
‘Lysmer’s analogue’ velocity (Gazetas & Dobry, 
1984a, 1984b) 

3.4 
v,, = n(l - v)v, 

(3) 

where v is the Poisson’s ratio of the soil. For an 
average typical value v = 0.4, equation (3) gives 
V La z 1.8 V, and equation (2d) simplifies to 

Similar springs and dashpots can be obtained 
using Novak’s plane-strain elastodynamic solu- 
tion for a rod oscillating in a continuum (Novak, 

1974, 1977, 1985; Novak et al., 1978). Novak’s 
results would be exact for an infinitely long, infi- 
nitely rigid rod fully embedded in a continuum 
space. In contrast, equations (2b) and (2d) for 
radiation damping are derived in two steps 

(4 

(4 

their form is determined from a simple one- 
dimensional ‘cone’ model (Gazetas & Dobry, 
1984a; Gazetas, 1987; Wolf, 1992) which 
resembles Novak’s model but does allow for 
some non-zero vertical deformation of the soil 
during lateral motion, as is appropriate due to 
the presence of the stress-free surface and to 
the non-uniformity with depth of pile deflex- 
ions 
the numerical coefficients of the two expres- 
sions are then calibrated by essentially curve- 
fitting rigorous finite element results for a 
variety of pilesoil geometries and properties, 
as well as for different loading conditions 
(Gazetas & Dobry, 1984a; Gazetas, 1987; 
Wolf, 1992). 

The spring constants, however, are derived 
solely through curve-fitting, i.e. by matching pile- 
head stiffnesses of the Winkler and the finite 
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element formulations. One approximation intro- 
duced in deriving equations (2a-2d) is to neglect 
the (relatively small) influence of pile slenderness 
and flexibility (measured for example through L/d 
and E,/E,). 

The resulting values from equations (2)-(4) for 
k,, c,, k, and c, at various frequencies are gener- 
ally comparable with those of Novak. Equations 
(2)-(4) are preferred for three reasons: first, they 
are simpler (as they do not involve complicated 
expressions with Bessel functions of complex 
argument). Second, they avoid the substantial 
underestimation of stiffness values by the plane- 
strain model at frequencies wd/VS < 1, i.e. in the 
range of practical interest. (Novak compensates 
for this underestimation through a simple intu- 
itive adjustment, which assumes constant k, and 
k, below two different ‘cut-off’ frequencies.) 
Third, the lateral radiation damping expression of 
equation (2d) does not show the spurious high 
sensitivity to Poisson’s ratio observed in the 
plane-strain Novak’s solution, which arises 
mainly from the unrealistic restriction of vertical 
soil deformation. 

It is also worth noting that dynamic Winkler 
springs and dashpots have been derived by Liou 
& Penzien (1980), Roesset & Angelides (1980) and 
Kagawa & Kraft (1980), using yet another meth- 
odology. They all used three-dimensional formu- 
lations (based on either Midlin’s static solution or 
finite element modelling) to relate local unit soil 
reaction to local pile deflexion at various depths 
along the pile; a single complex-valued dynamic 
stiffness S, and S, to be uniformly distributed as 
springs and dashpots along the pile (as is appro- 
priate for a Winkler foundation) was then derived 
by a suitable integration of local stiffnesses over 
depth. Only a small number of results, pertaining 
to a uniform soil stratum, have been presented in 
those studies. 

All these alternative methods give k and c 
values that are in reasonable agreement for the 
range of frequencies of greatest interest (a, < 1): 
individual differences in the Winkler parameters 
do not exceed lo-20%. The findings of this Paper 
can be shown to be quite insensitive to such dif- 
ferences; hence any set of expressions for the 
Winkler parameters could have been adopted 
successfully. 

The c, values obtained from equations (2c), (2d) 
and (4) apply in real situations only for fre- 
quencies w above the stratum cutoff frequency 

The latter is nearly identical to the natural 
zrqGf&icy w = (n/2)VJH in horizontal (shear) 
vibrations ofs the soil stratum. For w < w, radi- 
ation damping is vanishingly small, in function of 
the material damping; it may then be stated that 

c, x (cx)hystcrcsis = 2/X/m (5) 

Similarly, the c, expression in equations (2a) and 
(2b) applies only for frequencies above the 
stratum cutoff frequency in vertical compression- 
extension vibration, which is approximately equal 
to 

0, 2 3.4oJ[IL(l - v)] 

For w < w, 

AXIAL VIBRATION 
Governing equations and solution 

For very short (say, L/d < 10) and stiff 
(E,/E, > SOCKI) piles, the basic validity of the sim- 
phfying assumption of synchronous wave emis- 
sion is self-evident, as such piles respond 
essentially as rigid bodies to axial loading (static 
or dynamic). For the other extreme case, of long 
and flexible piles, the pile is considered here as an 
infinite elastic ‘thin’ rod (i.e. lateral inertia effects 
are ignored, in accordance with classical rod 
theory). The deflected state of such a pile and the 
forces acting on an element are shown in Fig. 2. 
For harmonic steady-state oscillations, the verti- 
cal displacement v(z, t) of a point on a cross- 
section of the pile at depth z and time t can be 
written as 

v(z, t) = v(z) eio’ 

and dynamic equilibrium yields 

(8) 

E A dz44 - - (k, + ioc, - mo’)v(z) = 0 
’ ’ dz’ (9) 

Solutions are obtained separately for each of the 
two possible cases o < 6, and w 2 W, , where 

6, = (k,/m)‘/’ 

First, consider o < 6,. This inequality trans- 
lates approximately to a, < 1.8, which is the 
usual range of practical interest in foundation 
problems. Equation (9) can be written as 

d’o(z) - - n2v(z) = 0 
dz2 

where 12’ is a complex number (having positive 
real and imaginary parts) with 

L = R cos i + i sin : 
> 

(12) 

where 

(13) R = (kz - mo2)2 + (wc,)~ ‘I4 

(4, A,)’ 1 

0 = tan-’ 
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The solution to equation (11) is 

MAKRIS AND 

e 
v(z,t)=A,exp Rcos-z ( > 2 

wt - R sin - z (15) 

where A, and A, are integration constants to be 
determined from the boundary conditions. For 
the displacement to remain finite as z tends to 
infinity, A, must vanish. If V, is the displacement 
at the pile head (z = 0), equation (15) leads to 

r(z,r)=VOexp(-Rcos:z) 

6 
ot - R sin - z 

2 (16) 
For an applied harmonic load P, exp (iwt) at the 
top of the pile (PO is a real number), the pile-head 
displacement is a complex number (its real part 
being the component that is in phase with the 
applied force, while the imaginary part is the 
out-of-phase component) 

(17) 

where R and ~9 are given by equations (13) and 
(14) respectively. It can be checked that when 
w = 0 (i.e. under static loading), 0 = 0 and equa- 
tion (14) reduces to the familiar static expression 
(Roesset & Angelides, 1980) 

(18) 

Equation (16) represents a travelling wave of 
amplitude decreasing 
and of phase velocity 

c, = w 
R sin 612 

(19) 

in which both R and 0 are functions of the fre- 
quency w, and depend on the damping c,. With 
an arbitrary dynamic loading, when several fre- 
quencies would be present, each harmonic com- 
ponent of motion would propagate with a 
different velocity, and therefore the motion expe- 
rienced by a receiver at a neighbouring location 
would be different (less pronounced) than the 

exponentially with depth 

GAZETAS 

input (source) motion: hence the term ‘dispersion’ 
relation which is used in wave propagation 
theory to describe such an equation. 

Second, consider o 2 W, This inequality 
translates to approximately a, > 1.8, a frequency 
range of lesser interest, but nevertheless examined 
here as it gives an insight into asymptotic behav- 
iour at high frequencies. The solution now takes 
the form 

D(z, t) = V, exp 

K 6 
x exp i wt - R cos - z 

2 >I (20) 
where R is as in equation (13), but 9 is negative 
(-x/2 < I9 < 0). 

In this case 

v, = 

-PO sini+icos: 
( > 

RR, 4, 
(21) 

Equation (20) represents a travelling wave with 
amplitude decreasing exponentially with depth 
and a phase velocity 

c,= o 
R COS e/2 

(22) 

Equation (22) is the dispersion relation for the 
second case. 

Discussion of results 
From the dispersion relation of equation (19), the 
ratio of the pile phase velocity to the soil S-wave 
velocity is obtained 

C a= ~oJEed4hl 
K {u-i - (7d4)SA no212 +f2211’2 

where 

x sin {$ tan-’ cf2/(fi - (7c/4)s,s,ao2)]} 

(23) 

s1 = GJE, (24a) 

s2 = E$E, (24b) 

s3 = PplP, (24~) 

fi = 0.6(1 + 0.5,/a,) (24d) 

f* = 1.27rs,ajj’4 + 2fifl (24e) 

The ratio CJV, is plotted against a, in Fig. 3 for 
two characteristic values of relative pile stiffness, 
s2 = E,fE, = 1000 and 5000, and two pile mass 
densities, pP = 0.7~~ and 1.4~~. In the frequency 
range of greatest practical interest (i.e. for 0.2 < 



PHASE DIFFERENCES IN FIXED-HEAD PILE 141 

160 - 

b* - 2 120 

60 - 

40 - 

01 I I I I I I I 
0.0 0.2 0.4 0.6 0.8 1 .o 1.2 1.4 

a, = cod/V, 

Fig. 3. Dispersion relationships for phase velocity of waves in an axially vibrating iniinitely 
long pile, in the frequency range of greatest interest, for two values of pile-to-soil Young’s 
moduli ratio and two values of pile-to-soil mass densities ratio 

a, < 0.8), the ratio CJV, attains relatively high 
values, of the order of 70 for EJEs = 1000 and 
170 for E,/E, = 5000. As a result, phase differ- 
ences introduced by waves travelling down the 
pile would be negligible compared with the phase 
differences due to S-waves travelling in the soil 
from one pile to another. Thus, for example, with 
a pile of L = 20d and pP = 1.4p,, the error 
yielded by assuming synchronous wave emission 
would be of the order of 4% (for EplEs = 1000) 
and 2% (for EdEs = 5000). 

To show this more clearly, the phase angle 
from equation (16) is 

e 
4(z) = of - Rz sin - 

2 (25) 

Figure 4 shows the phase differences 
A0 = Ad(z) between the displacement of a section 
at depth z and that at the head of the pile, for two 
values of a0 (0.2 and 0.5) and for three values of 
EJE,: 5000 (typical for soft soil), 1000 (medium- 
stiff soil), and 300 (stiff-hard soil). Evidently, even 
in the case of hard soil (i.e. in the case of a rela- 
tively very flexible pile), the pile at a depth 
z = 20d has a phase difference with the head of 
only about 15”. For the softer soil (stiffer pile), 
Ad < 4”. These differences are indeed insignifi- 
cant (within engineering accuracy), and therefore 
the assumption of synchronous emission is a rea- 

sonable approximation. A similar conclusion can 
be drawn from Fig. 3 of Novak (1977). 

As these results were derived on the basis of an 
infinitely long bar on dynamic Winkler founda- 
tion model, it is of interest to show their general 
validity for piles of finite length supported by a 
visco-elastic continuum. To this end, a rigorous 
finite element study was conducted for a pile of 
slenderness ratio L/d = 20 embedded in a deep 
homogeneous stratum and having EJE, = 1000 
or 5000. Fig. 5 shows the distribution along the 
length of the pile of the real and imaginary parts 
of the vertical pile displacement, u = u(z), for the 
same two values (0.2 and 0.5) of the frequency 
factor a,. Evidently, the imaginary and real com- 
ponents of the displacement as well as the 
resulting phase angle remain almost constant 
with depth; hence, the phase differences between 
various points along the pile and its head (also 
plotted in Fig. 5) are very small, and their values 
are very close to those predicted by the analytical 
method (Fig. 4). Thus, the analytical results and 
the hypothesis of synchronous wave emission are 
largely substantiated. However, in much stiffer 
soils, for which the moduli ratio EJEs may attain 
values lower than, say, 300 (e.g. hollow pipe piles 
in hard soil), the apparent phase velocity C, 
becomes a smaller multiple of V,, and then for 
very slender piles (L > 40) phase differences along 
the pile may reach 40” at higher frequencies. In 
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Fig. 4. Phase difference between displacements at depth z and at pile top for two values of the frequency factor 

such cases the assumption of synchronous emis- 
sion might not be applicable. Dobry & Gazetas 
(1988) have reported that their simple pile group 
interaction factor (equation (l)), leads to an over- 
prediction of pile group effects for values of E,/E, 
lower than 300. 

A further observation can be made on the dis- 
persion relation of equation (19). While Fig. 3 
plots C, for a homogeneous halfspace, in reality, 
bedrock or at least a stiff rock-like soil layer is 
likely to exist at some depth below the ground 
surface. Then the soil deposit is a deep stratum 
rather than a true halfspace, although a long pile 
can still be modelled as an infinitely long beam. 
Below the stratum cutoff frequency u, the pile- 
soil system radiates very little energy, and c, 
essentially reflects only the hysteretic material 
damping in the soil. Without material damping 
c, = 0, and the solution reduces to the case dis- 
cussed by Wolf (1985, 1988), in which the phase 
velocity is indeed infinite (as 6 = 0). Therefore as 
a first approximation, for w < 0,: C, -+ co. In 
general, however, the phase velocity is finite pro- 
vided that a mechanism of energy dissipation 
exists along the pile (radiation or material 
damping). 

It is also of interest to study the complete evol- 
ution of the phase wave velocity over an extreme 
range of frequencies (0 < a, < lo), as shown in 

Fig. 6 for a pile with E,/E, = 1000 and in Fig. 7 
for a pile with E,JEs = 5000 for two different pile 
mass densities: pP = 1.4~~ and 0.7~~. The solid 
curve represents the developed dispersion rela- 
tion; it is obvious that equations (19) and (22) 
give the same value for both C, and dCJda, at 
the characteristic frequency WZ. Also plotted in 
Figs 6 and 7 are the dispersion relations of two 
simpler associated systems, namely a semi-infinite 
rod on elastic-Winkler foundation and a semi- 
infinite unsupported rod. These two systems have 
been studied extensively in the wave-propagation 
literature (e.g. Graff, 1975; Achenbach, 1976), and 
are obviously particular cases of the pile system 
studied here (Fig. 2). The phase velocity C, for 
the rod on elastic foundation is obtained from 
equations (19) and (22) by setting c, = 0 at all fre- 
quencies. As discussed by Wolf (1985) and men- 
tioned above, C, becomes infinite at and below 
the characteristic frequency W, Therefore 

C,=m, ifw<f%, (26a) 

WW 
The phase velocity C, for longitudinal waves in 

an unsupported rod (called bar or rod wave 
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Fig. 5. Distribution with depth of normalized vertical pile displacements and 
pile-displacement phase differences for an L/d = 20 pile in a deep homoge- 
neous soil: (a) Q./E, = 1000; (b) &,/ES = 5000; displacements of soil below the 
pile are also plotted; real part denotes the component of displacement that is in 
phase with the applied force and imaginary part denotes the component of dis- 
placement that is out of phase with the applied force; results were obtained with 
a dynamic finite element formulation (Blaney et al., 1976) for the two shown 
values of the frequency factor 

velocity) is equal to J(E,/p,) only when lateral 
inertia effects are ignored. However, for the fre- 
quency range studied (a, < lo), the decline of C, 
with frequency (called the Pochhammer effect in 

wave theory (Graff, 1975)) is indistinguishable in 
the scale of the figure. 

Figures 6 and 7 reveal an interesting feature: 
all three phase wave velocities C,, C, and C, 
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Fig. 6. Comparison of dispersion relations for three long- Fig. 7. Comparison of dispersion relations for three long- 
itudinal phase velocities: C,, for a pile supported on itudinal phase velocities: C, , for a pile supported on axial 
axial springs and dashpots (modelling embedment in springs and dashpots (modelling embedment in 
halfspace); C,, for a bar on axial springs; CL for an balfspace); Cs, for a bar on axial springs; CL for an 
unsupported bar-two different values of pile-to-soil mass unsupported bar-two different values of pile-to-soil mass 
densities ratio; EJE, = 1000 densities ratio; E&E, = 5000 

reach identical asymptotic values at high fre- 
quencies. It appears that at these frequencies pile 
inertia effects dominate, while the resistance of 
the supporting springs and dashpots becomes 
negligibly small in comparison. 

LATERAL VIBRATION 

Governing equation and solution 
With regard to lateral excitation, the assump- 

tion of an infinitely long pile is quite appropriate 
even for stiff piles, as their active length is usually 
smaller than the total pile length. Indeed, for a 
pile on Winkler foundation, the active length 
below which the pile deformations are negligible 
is given by Randolph (1981) as 

1, % 4(u)“* N 1.75d(+y4 

EdE, = 5000 

ede. = 0.7 

I 

0 IA 1 I I 

i 
I 

. G \ ede. = 1.4 

I I I I 
72 

I 
4 6 a 10 

FL&d/V, 
a, = codI’/, 

where the expression for k, from equation (2~) has 
been used. For the typical values of E,/E, = 1000 
and 5000, the active lengths from equation (27) 
are only about 10d and 1% respectively. As 
shown by Krishnan et al. (1983) and Gazetas & 
Dobry (1984a, 1984b) the concept of the active 
length is also valid under dynamic harmonic 
loading, although the exact values of I, are slight- 
ly larger than those predicted from equation (27). 
Hence, in most cases, piles respond as infinitely 
long beams. 

The pile is modelled as an Euler-Bernoulli 
beam, where the effects of rotatory inertia and 
shear distortion are ignored. The deflected state 
of the pile and the forces acting on an element are 
shown in Fig. 2, with u(z, t) denoting the horizon- 
tal displacement at depth z and time t. Zero slope 
is imposed at pile head to account for the shape 
of deformation induced by a horizontally- 
translating rigid pile cap (fixed-head pile, in 
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geotechnical terminology). For a harmonic 
steady-state excitation u(z, t) = U(Z) exp (iot), 
dynamic equilibrium gives 

E I  d4W 
- + (k, + iwc, - mw2)u(z) = 0 p p dz4 

(28) 

The solution to equation (28) is sought separately 
for the two cases of w < i3, and w > Li,, where 
w, = (/CX/m)“Z. 

First, consider w < I&. This is again the usual 
range of greatest interest in foundation dynamics, 
corresponding approximately to a, < 1.8. The 
solution of equation (28) derived in Appendix 1 
takes the form 

u(z, t) = ? (( 1 + i) exp (- Rbz) 

x exp [i(wt - Raz)] 

+ (1 - i) exp (-Raz) 

x exp [i(wt + Rbz)]} (29) 

where U, = u(O) is the displacement amplitude at 
the pile head and R, 0, a and b are as given in 
Appendix 1. 

For an applied harmonic load P, exp (iwt) 
with P, real, U, is complex 

u, = Pobl - iy2) 
Ep 1, R3(yi2 + ~2’) 

(30) 

where 

y1 = -a3 - b3 + 3a2b + 3ab2 

yz = a3 - b3 + 3a2b - 3ab2 

(3W 

(31b) 

and a, b are as given in Appendix 1. It can be 
checked that when w = 0 (i.e. under static 
loading), a = b = 1, y1 = 4 and y2 = 0; then 
equation (30) reduces to the familiar static expres- 
sion 

PO U,=- 
4E, Ip 1’ (32) 

with I (from Appendix 1) being simply equal to 
the static value (Elson, 1984) 

1 = (k,,‘4E, 1p)1’4 (33) 

The first term in the parentheses in equation 
(29) corresponds to a downwardly propagating 
wave and the second term to an upwardly propa- 
gating wave, both with amplitude decaying expo- 
nentially as with z. It should be emphasized that 
the two waves coexist and the displacement dis- 
tribution along the pile should always be regard- 
ed as the superposition of both. Nevertheless, the 
phase velocity of each wave separately can be 

identified, giving a dual dispersion relation 

“‘=R(cos{+sin~) 
(34a) 

“=R(coscsin$ 
(34b) 

Second, consider w > cc,, which translates 
approximately to n, > 1.8, a frequency range of 
less practical interest, which is examined here as 
providing insight into asymptotic behaviour at 
high frequencies. Following a similar procedure 
to the one already outlined, gives the solution 

u(z, t) = ?{(I •t i) exp (- Rqz) exp [i(wt - Rpz)] 

+ (1 - i) exp (- Rpz) exp [i(wt + Rqz)]} 

(35) 

where 

R= 
(mu2 - kJ2 + (WC.J~ I’* 

(E, I,)’ 1 (36) 

p = cos $ > 0, 
e 

q= -sin;>0 (37) 

and B is given by the same expression as for the 
case w < 6, (given in Appendix I), but now takes 
a negative value (- 7r/2 < 6 < 0). Again, the solu- 
tion is a superposition of two waves, one propa- 
gating downwards and one propagating upwards, 
with respective phase velocities 

c,L =w 

R cos f 
(38a) 

C,f= w 

-Rsin$ 
(3W 

In the completely hypothetical case of c, = 0, one 
would have 0 =0, p= 1, q =0, R = (mw2 
- kJE,I) , ‘I4 = 1. and equation (36) would 

reduce to 

u(z, t) = + = ((1 - i) exp (--AZ) exp (iwt) 

+ (1 + i) exp [i(wt - AZ)]} (39) 

In this case only down-going waves exist, as the 
term corresponding to incoming waves reduces to 
a decaying exponential. 
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DISCUSSION 
From equations (34) and (38), the phase velo- 

cities C,l and Cat of the direct (down-going) and 
reflected (up-coming) waves are shown as solid 
lines in Figs 8 and 9, over a wide range of the 
frequency factor 0 < n, < 10. Also plotted in Figs 
8 and 9 are the frequency-dependent phase velo- 
cities of a semi-infinite beam on the elastic- 
Winkler foundation (Cw), and a semi-infinite 
unsupported flexural beam Cr. These two cases 
are recovered from the developed formulation for 
c, = 0 and k, = c, = 0, respectively. The corre- 
sponding phase velocities are 

C,=co, ifw<i3, (40a) 

ede. = 0.7 

0 I I I 1 A 
0 j2 4 6 8 10 

W,dlV, 
a, = wdlV, 

Fig. 8. Phase wave velocities of beams in lateral harmo- Fig. 9. Phase wave velocities of beams in lateral harmo- 
nic oscillations; tbe two solid lines are for the up-going nic oscillations: the two solid linea are for the up-going 
sod down-going waves in a pile oa lateral springs and and down-going waves in a pile on lateral springs and 
dashpots (modelling embedment in halfspace); Cw is for dasbpots (modelling embedment in halfspace); C, is for 
a flexoral beam on lateral springs; C, is for an unsup a flexural beam oo lateral ‘spriogs’; C, is for ao ansop- 
ported flexoral beam-two ditTerent values of pile-to-soil ported flexoral beam-two different values of pile-to-soil 
mass densities ratio; E,/E, = 1000 mass densities ratio; E&E, = SO00 

Ja0 
c,=v+- + ( > 

l/4 

13 
(41) 

where f, = 1.2 and f2 = 6~,ai/~ + 2fifl. 
The following trends are worthy of note. 
The presence of material and geometric 

damping in the pile-soil system has a highly sig- 
nificant effect on the nature of propagating waves 
and the phase velocities. As mentioned above, an 
upward propagating (reflected) wave is generated 
only in the damped system. Moreover, at the low 
frequency range of usual interest (a, < I), while 
the phase velocity becomes infinite in the 
undamped case Cw, both C,l and C,t achieve 
very small values and, in fact, tend to zero with 
decreasing frequency. Hence the presence of a 
rigid soil layer or rock at a shallow depth that 
would create a cutoff frequency w,, below which 

@de, = 1.4 

W,dlV, 
a, = wd/V, 
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radiation damping diminishes, deserves attention. 
In such a case, if soil and pile material damping 
are ignored, then c, = 0, 0 = 0, a = b = 1, R = 
(k, - mw2/4E, IJ 1/4 = 1 (real number), and equa- 
tion (29) simplifies to 

u(z, t) = U, e-“‘(sin lz + cos AZ) eiwt (42) 

which describes a standing wave and is identical 
in form to the static solution (Scott, 1981), to 
which it reduces for w = 0. Hence, in this case 
there are no propagating waves (infinite apparent 
phase velocity) and all points move in phase, 
although with an amplitude decreasing exponen- 
tially with depth, in accordance with the behav- 
iour of the elastically restrained beam (equation 
(42)) already described. 

The phase velocity C,l of the downwardly pro- 
pagating wave in the pile remains very close to 
the velocity C, of the (unsupported) flexural beam 
for all but the very low frequencies. Nevertheless, 
it is perhaps surprising that C,’ is much closer to 
C, than to C,.,. Hence, neglecting radiation and 
material damping may adversely affect even the 
nature of the solution. 

The phase velocities of the three downwardly 
propagating waves, namely Cal in the pile, C, in 
the elastically-restrained beam and C, in the flex- 
ural beam, converge to a single curve at high fre- 
quencies (say a, > 3), and tend to infinity by 
growing in proportion to ,/a. However, the 
velocity C,’ of the reflected wave in the pile soon 
diverges significantly and tends to infinity as a 
power of o. That the phase velocities grow 
without limit with increasing frequency is an inac- 
curacy attributed to neglecting rotatory inertia 
and shear distortion effects. Such effects must be 
included in the formulation if more correct values 
are to be obtained for phase velocities at very 
high frequencies. 

No clear conclusions can be drawn from Figs 8 
and 9 regarding the assumption of synchronous 
wave emission from a laterally oscillating pile. 
Both C,l and Cat attain relatively small values, of 
about 2-5 V,, in the frequency range of greatest 
interest, even for a relatively stiff pile (EJE, = 
5000). It seems that the only way to assess the 
significance of such wave velocities is to examine 
the phase differences among lateral displacements 
along the pile. 

1.2 

r 

0.8 h 

Fixed-head pile 

zid 

Fig. 10. Variation with depth of phase diierences and 
normalized lateral deflexion amplitudes at two frequency 
factors 

Fig. 11. Variation with depth of phase differences and 
normalized lateral deflexion amplitudes at two frequency 
factors 
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To this end, the phase of the motion at a par- 
ticular depth z in time t is computed from 

and for z equal to zero the phase becomes 

The phase difference between the motion at depth 
z and the motion at the head of the pile 

A+ = or - I$(z, t) (45) 

is plotted in Figs 10 and 11 as a function of z/d 
for two values of the dimensionless frequency a, 
(0.2 and 0.5) for EJES = 1000 and 5000. It is clear 
that phase differences remain quite small up to a 
certain depth, beyond which they increase 
rapidly, especially at higher frequencies. Figs 10 
and 11 also show the normalized amplitude of 
pile displacements plotted against z/d. It is 
evident that, strictly speaking, the assumption of 
simultaneous emission is not valid. Nevertheless, 
it is also clear that phase differences become sub- 
stantial only at relatively large depths where the 
displacement amplitude has decreased signifi- 
cantly; thus waves emitted from such depths 
would have a negligible amplitude and their 
phase differences would be of little, if any, conse- 
quence to adjacent piles. Hence, the error intro- 
duced by assuming synchronous wave emission 
along the pile would in most cases be acceptable. 
This may explain the successful performance of 
the method developed by Dobry & Gazetas 
(1988), Makris & Gazetas (1992), and Gazetas & 
Makris (1991), as shown in Fig. 1. 

CONCLUSIONS 
Axial vibrations 

When an infinitely long pile embedded in a 
realistic dynamic-Winkler model of a homoge- 
neous halfspace is subjected to axial harmonic 
head loading, it undergoes steady-state oscil- 
lations due to a compression-extension wave that 
propagates downwards with amplitude decaying 
exponentially with depth, and a frequency- 
dependent phase velocity C, (dispersive system). 

In the frequency range of greatest interest in 
foundation dynamics (0.2 ,< a, < 0+3), C, initially 
increases with frequency and for typical real-life 
piles achieves quite large values compared to the 
S-wave velocity in soil V,. As a result, phase dif- 
ferences between displacements along the oscil- 
lating pile are very small and can be neglected in 
approximate studies of through-soil interaction 
between two adjacent piles-a conclusion for 

which additional (direct and indirect) supporting 
evidence is provided in this Paper. 

In the frequency range of interest considered, 
the wave velocity C, of a bar elastically restrained 
solely by Winkler springs is infinite. However, C, 
could approach infinity only at frequencies below 
a possible stratum cutoff frequency (when radi- 
ation damping vanishes) if all material hysteretic 
damping were ignored. 

At high frequencies (a, x 5-lo), C, , C, and the 
(unsupported) bar wave velocity C, reach the 
same asymptotic value, equal to about J(EJp,) 
(lateral inertia Pochhammer effects are not as yet 
discernible). 

Lateral vibrations 
During lateral steady-state oscillation under 

harmonic fixed-head horizontal leading, two 
waves develop in the pile: a downwardly propa- 
gating (direct) wave with phase velocity C,l, and 
an upwardly propagating (reflected) wave with 
different phase velocity C,f-both having ampli- 
tude decaying exponentially with depth. 

The two phase velocities C,l and Cat increase 
monotonically with frequency, the latter at a 
much faster rate. In the frequency range of great- 
est interest they both attain very low values, only 
a few times larger than V, in the soil but smaller 
than C, (the phase velocity of an unsupported 
flexural beam). 

In contrast to the spring-and-dashpot sup- 
ported pile, only one downwardly propagating 
wave develops in a beam supported solely on 
springs. Moreover, the phase velocity C, in the 
latter is infinitely large below the characteristic 
frequency W, = J(kJm), i.e. in the frequency 
range of greatest interest. Therefore, ignoring the 
material and especially the radiation damping 
generated by the soil-pile system would change 
the nature of the wave propagation in laterally 
oscillating piles. 

Despite the relatively low values of C,l and Cat 
at 0 < a,, < 1.8, the two waves (direct and 
reflected) combine in such a way that phase differ- 
ences between pile deflexions at various depths 
remain quite small along the upper, most active, 
part of the pile. Such differences increase con- 
siderably at greater depths, but this has only a 
minor effect on how wave energy is radiated from 
a pile: this observation is significant in the behav- 
iour of pile groups. An exception to this behav- 
iour, however, must be noted: with hollow pipe 
piles in hard soils, for which EJE, < 300, phase 
differences may become appreciable and the 
assumption of synchronous emission might lead 
to a slight overprediction of pile to pile inter- 
action factors. 
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The phase velocities of the three downwardly 
propagating waves C,, C, and C, converge to a 
single curve at high frequencies (a, > 3), while 
growing in proportion to Jw. 

The results presented may lead to an improved 
understanding of wave propagation phenomena 
in piles, and find applications in geotechnical 
problems involving pile dynamics. 

APPENDIX 1. SOLUTION OF EQUATION (28) FOR 
w < 6, 

To obtain the solution of equation (28), first substi- 
tute 

4,P = 
k, + iwc, - mw’ 

%I, 
(46) 

and then apply the Laplace transform (to accommodate 
the boundary conditions directly) 

L d‘W 
[-]+4PLC.(z),=O 

dz4 

Denoting the Laplace transform of u(z) by Is(s) = L[u(z)] 
and using standard Laplace transform properties, equa- 
tion (47) becomes an algebraic equation in the trans- 
formed space 

f-J(s) = u’“(0) & + u”(0) -.A- 
s4 + 4P 

S3 

+ u(O) - 
s4 + 4P 

(48) 

where the prime denotes derivative with respect to z. 
Applying the inverse Laplace transform and intro- 

ducing Euler’s complex notation leads to the following 
solution, with the boundary conditions at z = 0 incor- 
porated as unknowns 

u(z) = - i[exp (iRaz) exp (Rbz) 

- exp (-iRbz) exp (Roz)][$ + $1 

- i[exp (iRbz) exp (-Raz) 

-exp(-iRnz)exp(Rbz)][$-$1 

+ [exp (iRaz) exp (Rbz) 

W 
+ exp (- iRbz) exp (Raz)] - 2 + y 1 
+ [exp (iRbz) exp (- Raz) 

- exp (-iRaz) exp (-Rbz)][z + y] (49) 

To ensure a finite displacement amplitude as z tends to 
infinity 

(504 

VW 

Using these expressions and exp (iwt) leads finally to 

u(z, t) = : {(l + i) exp (-iRbz) exp [i(ot - Raz)] 

+ (1 - i) exp (-Raz) exp [i(ot + Rbz)]} (51) 

where 

R = (kx - mw2)’ + (wc,)* “* 

(4R, 1,)’ 1 
’ 

o<e<q 

(52) 

(53) 

a = cos % + sin $ > 0, b = cos $ - sin % > 0 (54) 

NOTATION 
a, = wd/v, 

A, 
c, 

c, 

C, 

G1 

C,’ 

CE 

cw 

d 

E,, Es 

1: 
kx 

k, 

m 

dimensionless frequency 
cross-sectional area of pile 
distributed dashpot constant per unit pile 
length for soil reaction against pile lateral 
motion (equation (2d)) 
distributed dashpot constant per unit pile 
length for soil reaction against pile verti- 
cal motion (equation (2b)) 
phase velocity of wave propagating in an 
infinite rod supported by visco-elastic 
foundation and subjected to axial vibra- 
tion 
phase velocity of down-going wave pro- 
pagating in an infinite flexural beam sup- 
ported by visco-elastic foundation and 
subjected to lateral vibration 
phase velocity of up-coming wave propa- 
gating in an infinite flexural beam sup- 
ported by visco-elastic foundation and 
subjected to lateral vibration 
phase velocity of wave propagating in an 
infinite rod supported by elastic (Winkler) 
foundation and subjected to axial vibra- 
tion 
phase velocity of wave propagating in an 
infinite unsupported flexural beam sub- 
jected to lateral vibration 
phase velocity of wave propagating in an 
infinite unsupported rod subjected to 
axial vibration (longitudinal waves) 
phase velocity of wave propagating in an 
infinite flexural beam supported by elastic 
(Winkler) foundation and subjected to 
lateral vibration 
pile diameter 
Young’s moduli of pile and soil 
imaginary unit J( - 1) 
cross-sectional moment of inertia of pile 
distributed spring constant per unit pile 
length for soil reaction against pile verti- 
cal motion (equation (2c)) 
distributed spring constant per unit pile 
length for soil reaction against pile verti- 
cal motion (equation (2a)) 
distributed mass per unit length of pile 
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P, exp (ion) 

r 0 

: 

u(s, t) 

U, exp (ion) 
4% t) 

V, exp (id) 

K 
B 

A4 
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harmonic load at the pile head 
pile radius 
independent variable in Laplace space 
axis-to-axis distance between interacting 
piles 
horizontal pile displacement 

harmonic displacement of the pile head 
vertical pile displacement 
harmonic vertical displacement of the pile 
head 
S-wave velocity in soil 
damping ratio of the soil 
phase difference between the motion at 
depth z and the motion at the pile head at 
a specific time 
wave number (equation (44) or (47)) 
Poisson’s ratio of the soil 
phase of the pile motion at a particular 
depth z at time t 
circular frequency of oscillation 
stratum cutoff frequency in vertical 
(compression-extension) vibrations 
stratum cutoff frequency in horizontal 
(shear) vibrations 
characteristic frequency in horizontal 
(lateral) vibration, J(kJm) 
characteristic frequency in vertical (axial 
vibration, J(kJm) 
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